Copied!

Mathematical Signs

Content

Arithmetic

+
U+002B
U+2212
±
U+00B1
U+2213
÷
U+00F7
U+2217
U+2219
×
U+00D7
U+2211
U+2A0A
U+2140
U+220F
U+2210
U+2214
U+2238
U+2242
U+2295
U+2296
U+2297
U+2298
U+2299
U+229A
U+229B
U+229D
U+229E
U+229F
U+22A0
U+22A1
U+22C4
U+22C7
U+22C6
U+22CB
U+22CC
~
U+007E
U+2A71
U+2A72
Δ
U+0394

Various

U+2200
U+221E
U+2203
U+2204
|
U+007C
U+2224
U+2031
U+2207
U+2218
U+223B
U+223D
U+223E
U+223F
U+2240
U+2241
U+226C
U+228F
U+2290
U+2291
U+2292
U+22E2
U+22E3
U+2293
U+2294
U+22B6
U+22B7
U+22B8
U+22B9
U+22BA
U+22C8
U+22C9
U+22CA
U+22EE
U+22EF
U+22F0
U+22F1
U+2308
U+2309
U+230A
U+230B
U+2329
U+232A
U+22B2
U+22B3
U+22B4
U+22B5
U+22EA
U+22EB
U+22EC
U+22ED

Based on equality

U+2260
U+2248
U+2242
U+2243
U+2244
U+22CD
U+2245
U+2246
U+2247
U+2249
U+224A
U+224B
U+224C
U+224D
U+224E
U+224F
U+2250
U+2251
U+2252
U+2253
U+2254
U+2255
U+2256
U+2257
U+2259
U+225A
U+225C
U+225F
U+2261
U+2262
U+226D
U+22D5

Degrees and roots

^
U+005E
U+2070
¹
U+00B9
²
U+00B2
³
U+00B3
U+2074
U+2075
U+2076
U+2077
U+2078
U+2079
U+207A
U+207B
U+207C
U+207D
U+207E
U+221A
U+221B
U+221C

Comparison

<
U+003C
>
U+003E
U+2264
U+2265
U+2266
U+2267
U+2268
U+2269
U+226A
U+226B
U+226E
U+226F
U+2270
U+2271
U+2272
U+2273
U+2274
U+2275
U+2276
U+2277
U+2278
U+2279
U+227A
U+227B
U+227C
U+227D
U+227E
U+227F
U+2280
U+2281
U+22B0
U+22D6
U+22D7
U+22D8
U+22D9
U+22DA
U+22DB
U+22DE
U+22DF
U+22E0
U+22E1
U+22E6
U+22E7
U+22E8
U+22E9

Integrals

U+222B
U+222C
U+222D
U+222E
U+222F
U+2230
U+2231
U+2232
U+2233
U+2A0C
U+2A0D
U+2A0E
U+2A0F
U+2A10
U+2A11
U+2A12
U+2A13
U+2A14
U+2A15
U+2A16
U+2A17
U+2A18
U+2A19
U+2A1A
U+2A1B
U+2A1C

Geometric

U+2300
U+2220
U+2221
U+2222
U+299B
U+299C
U+299D
U+299E
U+299F
U+29A0
U+29A1
U+29A2
U+29A3
°
U+00B0
U+27C2
U+23CA
U+22A5
U+2225
U+2226
U+221D
U+221F
U+223A
U+2245
U+22BE
U+22D5

Figures

U+2312
U+25E0
U+25E1
U+22BF
U+25B3
U+25B7
U+25BD
U+25C1
U+25A1
U+25AD
U+25B1
U+25CB
U+25CA
U+22C4

Logical

U+2192
U+2190
Left Right Arrow
U+2194
U+219B
U+219A
U+2193
U+21D2
U+21D0
U+21D4
U+21CB
U+21AF
U+21CF
U+2227
U+2228
U+22C0
U+22C1
U+22C2
U+22C3
¬
U+00AC
U+2261
U+2234
U+2235
U+2236
U+2237
U+223C
U+22A7
U+22A2
U+22A3
U+22A4
U+22A5
U+22A8
U+22A9
U+22AA
U+22AB
U+22AC
U+22AD
U+22AE
U+22AF
U+22BB
U+22BD
U+22CE
U+22CF

Letters

ƒ
U+0192
U+2202
𝛛
U+1D6DB
𝜕
U+1D715
𝝏
U+1D74F
𝞉
U+1D789
𝟃
U+1D7C3
U+2135
U+2136
U+2115
U+211D
U+211A
U+2119
U+2124
U+210D
U+2102

Sets (mathematics)

U+2205
U+2201
U+2208
U+2209
U+220B
U+220C
U+2216
U+2229
U+222A
U+2282
U+2283
U+2284
U+2285
U+2286
U+2287
U+2288
U+2289
U+228A
U+228B
U+228D
U+228E
U+22D0
U+22D1
U+22D2
U+22D3
U+22D4
U+22F2
U+22F3
U+22F4
U+22F5
U+22F6
U+22F7
U+22F9
U+22FA
U+22FB
U+22FC
U+22FD
U+22FE

This section collects Maths symbols that can’t be correctly typed using keyboard. The represented set can be divided into several groups:

  • operator signs: addition, subtraction, division, multiplication, summation;
  • integral signs: double, triple, volume, surface, clockwise and counterclockwise;
  • inequality symbols: greater than, less than;
  • equal signs: equal, not equal, approximately equal, equivalent, identity;
  • geometric symbols: angle, proportions, diameter, perpendicular, parallelism, intersection;
  • geometric shapes: triangle, arc, parallelogram, rhombus;
  • radical sign, power of number;
  • for set theory: empty set, belongs to, subset, union, intersection;
  • logical connective: implication, and, or, negation, equivalent;
  • other symbols: infinity, there exists, belongs to, del or nabla, ellipsis for matrix, ceiling brackets, symbols for group theory.

Parabola: ƒ(x)=ax²+bx+c (a≠0)

Representation of exclusive OR: A⊕B :⇔ (A⋁B) ∧¬ (A∧B)

The velocity of a body falling from a height h: V=√̅2̅g̅h̅

To use these icons is the only way to insert a variety of Math symbols on a website or in a message appearing in any operating system. One need to simply copy a coded sign. The use of images for such purposes complicates the process: they demand customisation when developing or stuffing of Internet site. Also media content takes up too much disk space.

Math signs can be used in social networks, chats and forums. They also can be useful for web developers.

Mathematics as the language of all sciences can’t exist without its writing system. Its numerous concepts and operators have gained their typefaces as the science advances. Since the standard alphabets don’t include them, it is quite problematic to type these symbols. You can easily copy them on our website and paste.

Unicode Consortium has included a lot of different signs. If you can’t find what you need, try our site search or look through the next sections:

 Mathematical Operators 2200–22FF

 Miscellaneous Mathematical Symbols-A 27C0–27EF

 Miscellaneous Mathematical Symbols-B 2980–29FF

 Supplemental Mathematical Operators 2A00–2AFF

Letters for formulas:

 Greek and Coptic 0370–03FF

 Mathematical Alphanumeric Symbols 1D400–1D7FF

We made another set for superscript and subscript numbers. There you can find small numbers for fractions and exponentiations.

HTML Entities for Mathematical Symbols, Code Table

Symbol Entity HTML-code CSS-code Unicode Name
+ &plus; &#43; \002B U+002B Plus Sign
&minus; &#8722; \2212 U+2212 Minus Sign
× &times; &#215; \00D7 U+00D7 Multiplication Sign
÷ &divide; &#247; \00F7 U+00F7 Division Sign
= &equals; &#61; \003D U+003D Equals Sign
&ne; &#8800; \2260 U+2260 Not Equal To
± &plusmn; &#177; \00B1 U+00B1 Plus minus symbol
¬ &not; &#172; \00AC U+00AC Not Sign
< &lt; &#60; \003C U+003C Less-Than Sign
> &gt; &#62; \003E U+003E Greater-Than Sign
° &deg; &#176; \00B0 U+00B0 Degree Sign
¹ &sup1; &#185; \00B9 U+00B9 Superscript One
² &sup2; &#178; \00B2 U+00B2 Superscript Two
³ &sup3; &#179; \00B3 U+00B3 Superscript Three
ƒ &fnof; &#402; \0192 U+0192 Latin Small Letter F with Hook
% &percnt; &#37; \0025 U+0025 Percent Sign
‰ &permil; &#137; \0089 U+0089 Character Tabulation with Justification
&pertenk; &#8241; \2031 U+2031 Per Ten Thousand Sign
&forall; &#8704; \2200 U+2200 For All
&comp; &#8705; \2201 U+2201 Complement
&part; &#8706; \2202 U+2202 Partial Differential
&exist; &#8707; \2203 U+2203 There Exists
&nexist; &#8708; \2204 U+2204 There Does Not Exist
&empty; &#8709; \2205 U+2205 Empty Set
&nabla; &#8711; \2207 U+2207 Nabla
&isin; &#8712; \2208 U+2208 Element Of
&notin; &#8713; \2209 U+2209 Not an Element Of
&ni; &#8715; \220B U+220B Contains As Member
&notni; &#8716; \220C U+220C Does Not Contain As Member
&prod; &#8719; \220F U+220F N-Ary Product
&coprod; &#8720; \2210 U+2210 N-Ary Coproduct
&sum; &#8721; \2211 U+2211 N-Ary Summation
&mnplus; &#8723; \2213 U+2213 Minus-or-Plus Sign
&plusdo; &#8724; \2214 U+2214 Dot Plus
&setminus; &#8726; \2216 U+2216 Set Minus
&lowast; &#8727; \2217 U+2217 Asterisk Operator
&compfn; &#8728; \2218 U+2218 Ring Operator
&radic; &#8730; \221A U+221A Square Root
&prop; &#8733; \221D U+221D Proportional To
&infin; &#8734; \221E U+221E Infinity
&angrt; &#8735; \221F U+221F Right Angle
&ang; &#8736; \2220 U+2220 Angle
&angmsd; &#8737; \2221 U+2221 Measured Angle
&angsph; &#8738; \2222 U+2222 Spherical Angle
&mid; &#8739; \2223 U+2223 Divides
&nmid; &#8740; \2224 U+2224 Does Not Divide
&parallel; &#8741; \2225 U+2225 Parallel To
&npar; &#8742; \2226 U+2226 Not Parallel To
&and; &#8743; \2227 U+2227 Logical And
&or; &#8744; \2228 U+2228 Logical Or
&cap; &#8745; \2229 U+2229 Intersection
&cup; &#8746; \222A U+222A Union
&int; &#8747; \222B U+222B Integral
&Int; &#8748; \222C U+222C Double Integral
&iiint; &#8749; \222D U+222D Triple Integral
&conint; &#8750; \222E U+222E Contour Integral
&Conint; &#8751; \222F U+222F Surface Integral
&Cconint; &#8752; \2230 U+2230 Volume Integral
&cwint; &#8753; \2231 U+2231 Clockwise Integral
&cwconint; &#8754; \2232 U+2232 Clockwise Contour Integral
&awconint; &#8755; \2233 U+2233 Anticlockwise Contour Integral
&there4; &#8756; \2234 U+2234 Therefore
&because; &#8757; \2235 U+2235 Because
&ratio; &#8758; \2236 U+2236 Ratio
&Colon; &#8759; \2237 U+2237 Proportion
&minusd; &#8760; \2238 U+2238 Dot Minus
&mDDot; &#8762; \223A U+223A Geometric Proportion
&homtht; &#8763; \223B U+223B Homothetic
&sim; &#8764; \223C U+223C Tilde Operator
&bsim; &#8765; \223D U+223D Reversed Tilde
&ac; &#8766; \223E U+223E Inverted Lazy S
&acd; &#8767; \223F U+223F Sine Wave
&wreath; &#8768; \2240 U+2240 Wreath Product
&nsim; &#8769; \2241 U+2241 Not Tilde
&esim; &#8770; \2242 U+2242 Minus Tilde
&sime; &#8771; \2243 U+2243 Asymptotically Equal To
&nsime; &#8772; \2244 U+2244 Not Asymptotically Equal To
&cong; &#8773; \2245 U+2245 Approximately Equal To
&simne; &#8774; \2246 U+2246 Approximately But Not Actually Equal To
&ncong; &#8775; \2247 U+2247 Neither Approximately nor Actually Equal To
&asymp; &#8776; \2248 U+2248 Almost Equal To
&nap; &#8777; \2249 U+2249 Not Almost Equal To
&approxeq; &#8778; \224A U+224A Almost Equal or Equal To
&apid; &#8779; \224B U+224B Triple Tilde
&bcong; &#8780; \224C U+224C All Equal To
&asympeq; &#8781; \224D U+224D Equivalent To
&bump; &#8782; \224E U+224E Geometrically Equivalent To
&bumpe; &#8783; \224F U+224F Difference Between
&esdot; &#8784; \2250 U+2250 Approaches the Limit
&eDot; &#8785; \2251 U+2251 Geometrically Equal To
&efDot; &#8786; \2252 U+2252 Approximately Equal To or the Image Of
&erDot; &#8787; \2253 U+2253 Image of or Approximately Equal To
&colone; &#8788; \2254 U+2254 Colon Equals
&ecolon; &#8789; \2255 U+2255 Equals Colon
&ecir; &#8790; \2256 U+2256 Ring In Equal To
&cire; &#8791; \2257 U+2257 Ring Equal To
&wedgeq; &#8793; \2259 U+2259 Estimates
&veeeq; &#8794; \225A U+225A Equiangular To
&trie; &#8796; \225C U+225C Delta Equal To
&equest; &#8799; \225F U+225F Questioned Equal To
&equiv; &#8801; \2261 U+2261 Identical To
&nequiv; &#8802; \2262 U+2262 Not Identical To
&le; &#8804; \2264 U+2264 Less-Than or Equal To
&ge; &#8805; \2265 U+2265 Greater-Than or Equal To
&lE; &#8806; \2266 U+2266 Less-Than Over Equal To
&gE; &#8807; \2267 U+2267 Greater-Than Over Equal To
&lnE; &#8808; \2268 U+2268 Less-Than But Not Equal To
&gnE; &#8809; \2269 U+2269 Greater-Than But Not Equal To
&Lt; &#8810; \226A U+226A Much Less-Than
&Gt; &#8811; \226B U+226B Much Greater-Than
&between; &#8812; \226C U+226C Between
&NotCupCap; &#8813; \226D U+226D Not Equivalent To
&nlt; &#8814; \226E U+226E Not Less-Than
&ngt; &#8815; \226F U+226F Not Greater-Than
&nle; &#8816; \2270 U+2270 Neither Less-Than nor Equal To
&nge; &#8817; \2271 U+2271 Neither Greater-Than nor Equal To
&lsim; &#8818; \2272 U+2272 Less-Than or Equivalent To
&gsim; &#8819; \2273 U+2273 Greater-Than or Equivalent To
&nlsim; &#8820; \2274 U+2274 Neither Less-Than nor Equivalent To
&ngsim; &#8821; \2275 U+2275 Neither Greater-Than nor Equivalent To
&lg; &#8822; \2276 U+2276 Less-Than or Greater-Than
&gl; &#8823; \2277 U+2277 Greater-Than or Less-Than
&ntlg; &#8824; \2278 U+2278 Neither Less-Than nor Greater-Than
&ntgl; &#8825; \2279 U+2279 Neither Greater-Than nor Less-Than
&pr; &#8826; \227A U+227A Precedes
&sc; &#8827; \227B U+227B Succeeds
&prcue; &#8828; \227C U+227C Precedes or Equal To
&sccue; &#8829; \227D U+227D Succeeds or Equal To
&prsim; &#8830; \227E U+227E Precedes or Equivalent To
&scsim; &#8831; \227F U+227F Succeeds or Equivalent To
&npr; &#8832; \2280 U+2280 Does Not Precede
&nsc; &#8833; \2281 U+2281 Does Not Succeed
&sub; &#8834; \2282 U+2282 Subset Of
&sup; &#8835; \2283 U+2283 Superset Of
&nsub; &#8836; \2284 U+2284 Not a Subset Of
&nsup; &#8837; \2285 U+2285 Not a Superset Of
&sube; &#8838; \2286 U+2286 Subset of or Equal To
&supe; &#8839; \2287 U+2287 Superset of or Equal To
&nsube; &#8840; \2288 U+2288 Neither a Subset of nor Equal To
&nsupe; &#8841; \2289 U+2289 Neither a Superset of nor Equal To
&subne; &#8842; \228A U+228A Subset of with Not Equal To
&supne; &#8843; \228B U+228B Superset of with Not Equal To
&cupdot; &#8845; \228D U+228D Multiset Multiplication
&uplus; &#8846; \228E U+228E Multiset Union
&sqsub; &#8847; \228F U+228F Square Image Of
&sqsup; &#8848; \2290 U+2290 Square Original Of
&sqsube; &#8849; \2291 U+2291 Square Image of or Equal To
&sqsupe; &#8850; \2292 U+2292 Square Original of or Equal To
&sqcap; &#8851; \2293 U+2293 Square Cap
&sqcup; &#8852; \2294 U+2294 Square Cup
&oplus; &#8853; \2295 U+2295 Circled Plus
&ominus; &#8854; \2296 U+2296 Circled Minus
&otimes; &#8855; \2297 U+2297 Circled Times
&osol; &#8856; \2298 U+2298 Circled Division Slash
&odot; &#8857; \2299 U+2299 Circled Dot Operator
&ocir; &#8858; \229A U+229A Circled Ring Operator
&oast; &#8859; \229B U+229B Circled Asterisk Operator
&odash; &#8861; \229D U+229D Circled Dash
&plusb; &#8862; \229E U+229E Squared Plus
&minusb; &#8863; \229F U+229F Squared Minus
&timesb; &#8864; \22A0 U+22A0 Squared Times
&sdotb; &#8865; \22A1 U+22A1 Squared Dot Operator
&vdash; &#8866; \22A2 U+22A2 Right Tack
&dashv; &#8867; \22A3 U+22A3 Left Tack
&top; &#8868; \22A4 U+22A4 Down Tack
&perp; &#8869; \22A5 U+22A5 Up Tack
&models; &#8871; \22A7 U+22A7 Models
&vDash; &#8872; \22A8 U+22A8 True
&Vdash; &#8873; \22A9 U+22A9 Forces
&Vvdash; &#8874; \22AA U+22AA Triple Vertical Bar Right Turnstile
&VDash; &#8875; \22AB U+22AB Double Vertical Bar Double Right Turnstile
&nvdash; &#8876; \22AC U+22AC Does Not Prove
&nvDash; &#8877; \22AD U+22AD Not True
&nVdash; &#8878; \22AE U+22AE Does Not Force
&nVDash; &#8879; \22AF U+22AF Negated Double Vertical Bar Double Right Turnstile
&prurel; &#8880; \22B0 U+22B0 Precedes Under Relation
&vltri; &#8882; \22B2 U+22B2 Normal Subgroup Of
&vrtri; &#8883; \22B3 U+22B3 Contains As Normal Subgroup
&ltrie; &#8884; \22B4 U+22B4 Normal Subgroup of or Equal To
&rtrie; &#8885; \22B5 U+22B5 Contains As Normal Subgroup or Equal To
&origof; &#8886; \22B6 U+22B6 Original Of
&imof; &#8887; \22B7 U+22B7 Image Of
&mumap; &#8888; \22B8 U+22B8 Multimap
&hercon; &#8889; \22B9 U+22B9 Hermitian Conjugate Matrix
&intcal; &#8890; \22BA U+22BA Intercalate
&veebar; &#8891; \22BB U+22BB Xor
&barvee; &#8893; \22BD U+22BD Nor
&angrtvb; &#8894; \22BE U+22BE Right Angle with Arc
&lrtri; &#8895; \22BF U+22BF Right Triangle
&xwedge; &#8896; \22C0 U+22C0 N-Ary Logical And
&xvee; &#8897; \22C1 U+22C1 N-Ary Logical Or
&xcap; &#8898; \22C2 U+22C2 N-Ary Intersection
&xcup; &#8899; \22C3 U+22C3 N-Ary Union
&diamond; &#8900; \22C4 U+22C4 Diamond Operator
&sdot; &#8901; \22C5 U+22C5 Dot Operator
&Star; &#8902; \22C6 U+22C6 Star Operator
&divonx; &#8903; \22C7 U+22C7 Division Times
&bowtie; &#8904; \22C8 U+22C8 Bowtie
&ltimes; &#8905; \22C9 U+22C9 Left Normal Factor Semidirect Product
&rtimes; &#8906; \22CA U+22CA Right Normal Factor Semidirect Product
&lthree; &#8907; \22CB U+22CB Left Semidirect Product
&rthree; &#8908; \22CC U+22CC Right Semidirect Product
&bsime; &#8909; \22CD U+22CD Reversed Tilde Equals
&cuvee; &#8910; \22CE U+22CE Curly Logical Or
&cuwed; &#8911; \22CF U+22CF Curly Logical And
&Sub; &#8912; \22D0 U+22D0 Double Subset
&Sup; &#8913; \22D1 U+22D1 Double Superset
&Cap; &#8914; \22D2 U+22D2 Double Intersection
&Cup; &#8915; \22D3 U+22D3 Double Union
&fork; &#8916; \22D4 U+22D4 Pitchfork
&epar; &#8917; \22D5 U+22D5 Equal and Parallel To
&ltdot; &#8918; \22D6 U+22D6 Less-Than with Dot
&gtdot; &#8919; \22D7 U+22D7 Greater-Than with Dot
&Ll; &#8920; \22D8 U+22D8 Very Much Less-Than
&Gg; &#8921; \22D9 U+22D9 Very Much Greater-Than
&leg; &#8922; \22DA U+22DA Less-Than Equal To or Greater-Than
&gel; &#8923; \22DB U+22DB Greater-Than Equal To or Less-Than
&cuepr; &#8926; \22DE U+22DE Equal To or Precedes
&cuesc; &#8927; \22DF U+22DF Equal To or Succeeds
&nprcue; &#8928; \22E0 U+22E0 Does Not Precede or Equal
&nsccue; &#8929; \22E1 U+22E1 Does Not Succeed or Equal
&nsqsube; &#8930; \22E2 U+22E2 Not Square Image of or Equal To
&nsqsupe; &#8931; \22E3 U+22E3 Not Square Original of or Equal To
&lnsim; &#8934; \22E6 U+22E6 Less-Than But Not Equivalent To
&gnsim; &#8935; \22E7 U+22E7 Greater-Than But Not Equivalent To
&prnsim; &#8936; \22E8 U+22E8 Precedes But Not Equivalent To
&scnsim; &#8937; \22E9 U+22E9 Succeeds But Not Equivalent To
&nltri; &#8938; \22EA U+22EA Not Normal Subgroup Of
&nrtri; &#8939; \22EB U+22EB Does Not Contain As Normal Subgroup
&nltrie; &#8940; \22EC U+22EC Not Normal Subgroup of or Equal To
&nrtrie; &#8941; \22ED U+22ED Does Not Contain As Normal Subgroup or Equal
&vellip; &#8942; \22EE U+22EE Vertical Ellipsis
&ctdot; &#8943; \22EF U+22EF Midline Horizontal Ellipsis
&utdot; &#8944; \22F0 U+22F0 Up Right Diagonal Ellipsis
&dtdot; &#8945; \22F1 U+22F1 Down Right Diagonal Ellipsis
&disin; &#8946; \22F2 U+22F2 Element of with Long Horizontal Stroke
&isinsv; &#8947; \22F3 U+22F3 Element of with Vertical Bar At End of Horizontal Stroke
&isins; &#8948; \22F4 U+22F4 Small Element of with Vertical Bar At End of Horizontal Stroke
&isindot; &#8949; \22F5 U+22F5 Element of with Dot Above
&notinvc; &#8950; \22F6 U+22F6 Element of with Overbar
&notinvb; &#8951; \22F7 U+22F7 Small Element of with Overbar
&isinE; &#8953; \22F9 U+22F9 Element of with Two Horizontal Strokes
&nisd; &#8954; \22FA U+22FA Contains with Long Horizontal Stroke
&xnis; &#8955; \22FB U+22FB Contains with Vertical Bar At End of Horizontal Stroke
&nis; &#8956; \22FC U+22FC Small Contains with Vertical Bar At End of Horizontal Stroke
&notnivc; &#8957; \22FD U+22FD Contains with Overbar
&notnivb; &#8958; \22FE U+22FE Small Contains with Overbar
&lceil; &#8968; \2308 U+2308 Left Ceiling
&rceil; &#8969; \2309 U+2309 Right Ceiling
&lfloor; &#8970; \230A U+230A Left Floor
&rfloor; &#8971; \230B U+230B Right Floor
&lang; &#9001; \2329 U+2329 Left-Pointing Angle Bracket
&rang; &#9002; \232A U+232A Right-Pointing Angle Bracket